Linear function
Appearance
(Redirected from Linear functions)
In mathematics, the term linear function refers to two distinct but related notions:[1]
- In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one.[2] For distinguishing such a linear function from the other concept, the term affine function is often used.[3]
- In linear algebra, mathematical analysis,[4] and functional analysis, a linear function is a linear map.Cite error: A
<ref>
tag is missing the closing</ref>
(see the help page). these are more commonly called linear forms.
The "linear functions" of calculus qualify as "linear maps" when (and only when) f(0, ..., 0) = 0, or, equivalently, when the constant b equals zero in the one-degree polynomial above. Geometrically, the graph of the function must pass through the origin.
See also
[edit]- Homogeneous function
- Nonlinear system
- Piecewise linear function
- Linear approximation
- Linear interpolation
- Discontinuous linear map
- Linear least squares
Notes
[edit]References
[edit]- Izrail Moiseevich Gelfand (1961), Lectures on Linear Algebra, Interscience Publishers, Inc., New York. Reprinted by Dover, 1989. ISBN 0-486-66082-6
- Thomas S. Shores (2007), Applied Linear Algebra and Matrix Analysis, Undergraduate Texts in Mathematics, Springer. ISBN 0-387-33195-6
- James Stewart (2012), Calculus: Early Transcendentals, edition 7E, Brooks/Cole. ISBN 978-0-538-49790-9
- Leonid N. Vaserstein (2006), "Linear Programming", in Leslie Hogben, ed., Handbook of Linear Algebra, Discrete Mathematics and Its Applications, Chapman and Hall/CRC, chap. 50. ISBN 1-584-88510-6